
Webis at the TREC 2010 Sessions Track

Matthias Hagen , Benno Stein, and Michael Völske

Faculty of Media

Bauhaus-Universität Weimar, Germany

<first name>.<last name>@uni-weimar.de

Abstract In this paper we provide an overview of the Webis group’s two-phase

approach to the TREC 2010 Sessions track. In a preprocessing phase the queries

are segmented to highlight contained concepts. In the final retrieval phase we

treat Carnegie Mellon’s ClueWeb search engine as a black box and apply the

MAXIMUM QUERY framework.

1 Introduction

The TREC 2010 Sessions track offered the opportunity to apply our developed tech-

niques for user experience improvement during web search sessions. Our framework is

inspired by the observation that the interactions between web search users and search

engines follow a classic scheme. The user comes up with a set of (in her opinion) ap-

propriate keywords—or keyphrases—for a given information need. She submits a query

containing some of these keywords and gets back a ranked result list. If the user does

not find a match for her information need among the first results, she will hardly browse

all the items but submit different queries based on her keywords until she is satisfied

or decides to give up. This process forms a search session—the set of consecutive web

queries a user submits to a search engine in order to satisfy a given information need.

The track itself has two tasks: (1) to improve retrieval performance for a given query

by using the user’s previous queries from the same session, and (2) to improve retrieval

performance over an entire query session instead of a single query. Our framework for

these tasks consists of two parts. In a first step we use a query segmentation approach

from [HPSB10] to automatically detect and highlight concepts and phrases within the

queries. In the second step—the retrieval process itself—we adopt a user perspective

against an existing ClueWeb09 search engine and apply the MAXIMUM QUERY frame-

work from [SH10].

We apply the user perspective for the following reason. Experience shows that in

many cases a user’s first web query for her information need is answered reasonably

well by existing commercial search engines (i.e., the query brings up an appropriate re-

sult). In case that the first query was not successful, commercial search engines provide

different means of support (e.g., query expansion for queries returning lots of hits or

spelling correction for queries returning no hits due to typos). However, there is no real

session support yet such that respective techniques could also be implemented at user

site (e.g., in a proxy process that handles a user’s web queries).

Our approach has a more combinatorial flavor than current search engine’s user

support techniques but it is easily combinable with existing technology. We suggest

to derive the maximum query for a given set of keywords (i.e., a query containing as

many of the keywords as possible, while returning a reasonable number of results).

The requirement to contain as many of the keywords as possible reflects the following

rationale. Taken together, the keywords of a search session describe the user’s infor-

mation need. Some of the keywords might not be appropriate (e.g. typos) and should

be omitted, but the more keywords are contained in a maximum query the better is the

descriptiveness of the user’s information need.

The rationale for requiring a reasonable number of hits per query also deserves

closer consideration. Queries with empty result pages are useless and the same often

applies to queries returning only a handful of hits. This gives a lower bound on the

number of desired results. But there is also an upper bound since the number of results

a user will consider for a single query is usually constrained by a processing capacity k,
determined by the user’s reading time etc. If the user faces a query with millions of hits,

she can only check a fraction of the results—typically the top-ranked ones. Relevant

entries below are missed. Consistent with our User-over-Ranking hypothesis [SH11],

we argue that the best queries are the ones that are sufficiently specific to not return

millions of hits—but also not just one or two. For such queries the user can check

the complete result list and will not miss any potential match for her information need

due to search engine ranking issues that she cannot influence. That queries returning

about k many results indeed can improve retrieval performance is underpinned by our

experimental justification for the User-over-Ranking hypothesis [SH11]

Hence, from the user’s perspective, a maximum query contains a possible descrip-

tion of the information need and offers the chance to check all the results. However,

finding a maximum query “by hand” is not that straightforward. Several queries have to

be submitted to identify appropriate keyword combinations. Hardly any user will take

the time for such a lengthy procedure. Therefore, we apply an algorithm. To be applica-

ble at user site the algorithm is of external nature (i.e., it only uses the search engine’s

interfaces). The search engine is handled as a black box, acting like an oracle that an-

swers queries. There is no need for the user to know the underlying retrieval model or

implementation details. The black box we use for the Sessions track is Carnegie Mel-

lon’s ClueWeb search engine1.

The paper is organized as follows. In Section 2 we describe the applied query seg-

mentation process. The actual retrieval process is presented in Section 3. Achieved re-

sults of our system are shown in Section 4. A discussion and some concluding remarks

follow in Section 5.

2 Preprocessing phase

The TREC 2010 Sessions track queries contained no phrase information. Hence, we

decided to preprocess each single query by automatically detecting segments of words

that should have been highlighted as phrases for improved retrieval. As a query seg-

mentation procedure we use the ss-weighting scheme [HPSB10].

The basic and major assumption is that phrases contained in web queries really exist

on the web. The straightforward idea then is to use the web itself as a corpus to detect

1 http://boston.lti.cs.cmu.edu:8085/clueweb09/search/

potential query segments. The approach uses phrase occurrence frequencies to decide

which phrases are more likely segments than others. The largest obtainable collection

of web phrases is the Google n-gram corpus [BF06]; it contains n-grams of length 1
to 5 from the 2006 Google index along with their frequencies.

A query q is viewed as a sequence (w1, w2, . . . , wn) of n keywords. A valid

segmentation S for q is a sequence of disjunct segments s, each a subsection of q,
whose concatenation equals q. There are 2n−1 possible valid segmentations for q,
and (n2−n)/2 possible segments that contain at least two keywords from q. We derive

a score for each of the possible segmentations as follows. First, the n-gram frequency

count(s) for each possible segment s is retrieved. The frequencies of n-grams up to

n = 5 can be obtained directly from the corpus; we use an index of the Google n-gram
corpus in an inverted file from [SPT10]2. For longer n-grams up to n = 9, estimations

are made analog to the set-based method described in [TP08]. Having these counts at

hand, all valid segmentations are enumerated systematically, and for each segmenta-

tion S a score is computed according to the following function:

score(S) =
∑

s∈S,|s|≥2

|s||s| · count(s).

The factor |s||s| gives significant weight to longer segments compared to short ones

in order to compensate the power law distribution of occurrence frequencies on the

web. For example, “new york” has a much larger count than “new york times”.

The exponential scoring function should help to avoid segmentations like “new york”

“times”. For a query q we choose from all possible valid segmentations the segmen-

tation S that maximizes score(S). This simple approach is competitive with more in-

volved methods, as evaluation shows [HPSB10].

3 Retrieval phase

In the real retrieval phase we treat the Carnegie Mellon ClueWeb search engine as

a black box and submit segmented queries. When processing a query we adopt the

MAXIMUM QUERY framework [SH10] that works as follows.

3.1 Basic setting

Starting point is a set W = {w1, . . . , wn} of keywords and keyphrases (obtained by

the preprocessing), where the indices correspond to the order of the keywords in the

original query. Subsets Q ⊆ W can be submitted as queries (complete phrases would

be highlighted) assuming the AND notion that requires all keywords from Q to be

contained in every document. The ClueWeb engine’s reply to a queryQ consists of the

head of an exhaustive, ranked listLQ of documents containing all the keywords fromQ,

and an estimation lQ for the result list length |LQ|.

2 A corresponding service that can also handle wildcard queries etc. is freely available online:

http://www.netspeak.cc/

The task of MAXIMUM QUERY is to find a largest subset Q ⊆ W that satisfies

lmin ≤ lQ ≤ lmax for given constant lower and upper bounds lmin and lmax. As for the

Sessions track we set lmin = 1 (we do not tolerate empty result lists) and lmax = 1 000
(1 000 results should be reported per run). The size constraint on Q ensures Q to be as

specific of the user’s information need as possible while the result list constraints reflect

the desired capacity (in the TREC Sessions track case no more than 1 000 results would

be considered per run). Adopting the notation from [BG08] we say that for lQ < lmin

the query Q is underflowing, whereas for lQ > lmax it is overflowing. Queries that are

neither under- nor overflowing are valid. A valid query Q is maximal iff adding any

keyword fromW \Q results in an underflowing query. The largest maximal queries are

the maximum queries—the “target” of MAXIMUM QUERY.

To further explain our setting, consider the following example scenario with the ten

indexed documents d1, . . . , d10 and the set W = {w1, . . . , w5} of keywords with the

keyword document relationship given in Table 1.

Table 1. Keyword document relationship in the example scenario.

Keyword
Document

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

w1 • • • • •
w2 • • •
w3 • • • • • • • •
w4 • • • • • •
w5 • • • • • • •

Note that, submitted as a query, the set W itself will not result in any hit on the ten

document collection since none of the documents contain all keywords. Let lmin = 3
and lmax = 4 (i.e., we are looking for subsets of the keywords that are contained in

at least 3 and at most 4 documents). Figure 1 shows the hypercube of the possible 25

queries; valid queries are shown highlighted.

underflowing

overflowing

valid

{w2}

{w1, w3} {w1, w4} {w2, w3} {w4, w5}

{w3,w4,w5}

{

{w1} {w3} {w4} {w5}

{w1, w2} {w1, w5} {w2, w4} {w2, w5} {w3, w5}

{w1,w2,w3} {w1,w2,w4} {w1,w2,w5} {w1,w3,w4} {w1,w3,w5} {w1,w4,w5} {w2,w3,w4} {w2,w3,w5} {w2,w4,w5}

{w1, w2, w3, w4} {w1, w2, w3, w5} {w1, w2, w4, w5} {w1, w3, w4, w5} {w2, w3, w4, w5}

{w1, w2, w3, w4, w5}

}

{w3, w4}

Figure 1. Hypercube of possible queries in the example scenario.

An example of an overflowing query is {w3, w5} (six results), whereas {w1, w5}
is underflowing (two results). We have the four maximal valid queries {w1, w3},
{w1, w4}, {w2, w3}, and {w3, w4, w5} corresponding to the upper border in Figure 1.

In our example scenario the unique maximum element is {w3, w4, w5}.

3.2 Algorithm for finding maximum queries

The pseudo-code listing of our approach to find maximum queries is given as Algo-

rithm 1. A first pre-check removes underflowing keywords (lines 1 and 2 of the list-

ing) because they cannot be contained in a maximum query. Note that validity checks

(lines 2, 4, 15, and 17) are managed by submitting the query to the ClueWeb search en-

gine. A second pre-check (line 4) ensures that the remaining setW of non-underflowing

keywords itself is underflowing, since otherwiseW itself is maximum or no valid query

can be found at all. For the rather short queries and sessions of the TREC 2010 Sessions

track very often no keyword was removed as underflowing and the complete query

mostly still overflows. On such sessions we just report the first 1 000 results for the

complete queryW . As for the few other sessions we applied the following main part of

our algorithm.

The basic idea can be characterized as a depth-first search on a search tree con-

taining all possible queries. Revisiting nodes in the tree is prohibited by processing the

keywords in the order of their indices. The algorithm starts trying to find a maximal

Algorithm 1 Algorithm for MAXIMUM QUERY

Input:W = {w1, . . . , wn}, lmin, and lmax

Output: a maximum valid query Qmax ⊆W

1: for all w ∈ W do

2: if {w} is underflowing thenW ←W \ {w}

3: Qmax ← ∅
4: ifW is underflowing then

5: while (W 6= ∅) ∧ (|W | > |Qmax|) do
6: w ← keyword with lowest index from W

7: W ←W \ {w}
8: ENLARGE({w},W)

9: outputQmax

10: else output {W }

11: procedure ENLARGE(queryQ, keywords Wleft)

12: while (Wleft 6= ∅) ∧ (|Q|+ |Wleft| > |Qmax|) do
13: w← keyword with lowest index from Wleft

14: Wleft ←Wleft \ {w}
15: ifQ ∪ {w} is overflowing or valid then

16: Q′ ← ENLARGE(Q∪ {w}, Wleft)

17: ifQ′ is valid and |Q′| > |Qmax| then
18: Qmax ← Q′

19: return Q

valid query containing the first keywordw1. It adds the keywordsw2, w3 etc. as long as

the query remains non-underflowing.Whenever the query underflows, the last keyword

is removed and the next one tried. If all keywords have been tried and the resulting

query is valid, it is the current candidate to be a maximum query. The algorithm then

backtracks to other possible paths in the search tree. Pruning is done whenever the cur-

rent candidate cannot become larger than the currently stored maximum query. A valid

query that contains more keywords than the maximum query so far is stored as the new

maximum query. Since this strategy causes an exhaustive search, it is guaranteed to find

a maximum query if there is one at all.

Note that Algorithm 1 outputs the lexicographically first maximum query. Here

lexicographically means the following. Let Q and Q′ be two different queries and let

wmin be the keywordwith lowest index in the symmetric differenceQ△Q′ = (Q∪Q′)\
(Q∩Q′). We say thatQ comes lexicographically beforeQ′ with respect to the keyword

ordering w1, . . . , wn iff wmin ∈ Q. Computing the lexicographically first maximum

query is a reasonable approach as it reflects the idea that users in their queries first

type the keywords that are most descriptive of their information need. Hence, for the

Sessions track we always use the lexicographically first maximum query.

However, it would not be difficult to compute all maximum queries submitting a

few additional web queries and then select one of the maximum queries.

4 Evaluation

The evaluation for both tasks of the Sessions track is done by comparing three rankings.

One ranking has to be given for each of the two queries from the originally provided

150 two-query sessions. A third ranking could incorporate the knowledge that both

queries form a session.

4.1 Our runs

We have submitted two runs of our system, both with the query segmentation prepro-

cessing that highlights contained phrases. As for the individual single queries from each

session, both runs process the first and the second queries analogous as follows (respec-

tive result lists referred to as query1 and query2). For each single query we computed

a maximum query. In case of more than one maximum query the lexicographically first

with respect to the initial keyword ordering of the given queries is chosen. However, as

already described earlier, the provided 300 queries are rather short such that very rarely

terms were excluded from the queries in order to get back 1 000 results (chosen as the

upper bound as the track required submission of 1 000 results). From the maximum

queries for the first queries 138 out of 150 contain all phrases; for the second queries

141 out of 150 contain all phrases. For all queries the top 1 000 results where used for

the run when available.

The two runs of our system treated the individual single queries in the same way

but used a different scheme for the queries corresponding to the complete sessions. We

had an unweighted and a weighted run (respective ranked lists referred to as sessionu

for unweighted and sessionw for weighted) that worked as follows. In sessionu we

applied the described MAXIMUM QUERY framework for the complete setW of phrases

from both queries. In case of more than one maximum query the lexicographically first

with respect to the initial keyword ordering of the given queries is chosen. Again, very

often all keywords together still overflow; 128 out of 150 maximum queries contain

all phrases. For all queries the top 1 000 results where used for the result list when

available.

In sessionw we additionally pay attention to sessions with generalizations (sec-

ond query originated by deleting keywords from the first) or specializations (second

query contains additional keywords compared to first). Therefore, we weighted the

query phrases as follows (and derived maximum queries with respect to that weight-

ing). For phrases just appearing in the first query a term weight in Carnegie Mellon’s

ClueWeb09 search engine’s Indri query language is set to 0.5; in case that it is present

just in the second query, the weight is set to 2.0; for terms in both queries the weight

is 1.0. The idea is that by submitting a second query the user figured out that her first

query did not satisfy her information need and thus the new keywords in the second

query should be treated as more important. Note that the weighting scheme also influ-

ences the “drifting” sessions that are neither specializations nor generalizations. Again,

very often all keywords together still overflow; 128 out of 150 maximum queries con-

tain all phrases. For all queries the top 1 000 results where used for then result list when

available.

4.2 Evaluation metrics

The runs were evaluated on 136 query sessions for which NIST provided relevance

judgments. No judgments were given for the topics 24, 30, 35, 36, 58, 100, 114, 118,

120, 126, 130, and 136. Based on the provided relevance judgments, three evaluation

metrics are used: nsDCG@10, nsDCG_dupes@10, and nDCG@10. The nsDCG@10

metric [JPDN08] is computed as:

10∑

r=1

2rel(r,query1
) − 1

(log2(r + 1)) ∗ (log4(1 + 3))
+

10∑

r=1

2rel(r,query2
/session) − 1

(log2(r + 10 + 1)) ∗ (log4(2 + 3))
,

where rel(r, query1) is the relevance of the document in rank r in the query1 result list

and rel(r, query2/session) is the relevance of the document at rank r in the query2 or

the session result lists. The nsDCG_dupes@10 metric is similar to nsDCG@10 except

that duplicate documents in the top-10 ranks of the query2 or the session result lists

that appeared in the top-10 ranks of the query1 result list are considered non-relevant.

Note that nsDCG@10 and nsDCG_dupes@10 evaluate the entire session and thus for

each one of the two metrics there is an evaluation score for query1 → query2 and an

evaluation score for query1 → session (cf. Tables 2 and 3).

The nDCG@10 is the nDCG metric implemented as

10∑

r=1

2rel(r,query1
/query

2
/session) − 1

(log2(r + 1))

for the three ranked lists for query1, query2, or session in isolation.

4.3 Our obtained results

Table 2. Results for nsDCG@10 averaged over all 136 topics.

query1 → query2 query1 → session

unweighted 0.1796 0.1674
weighted 0.1796 0.1724
median all systems 0.2044 0.1784
max all systems 0.2488 0.2375

Our nsDCG@10 results and for comparison the median and max of all systems

are given in Table 2. It is interesting to note that our runs as well as the median and

maximum of all systems have better results query1 → query2 than for query1 →
session . This seems to suggest that the techniques to incorporate knowledge on the

whole session do not really work for the test cases. This is not that surprising at least

for our systems. Our approaches were not developed having such rather short queries

and sessions in mind; the targeted use case are longer sessions with more keywords

(cf. the discussion in Section 5).

The nsDCG@10 for query1 → session is the official metric for Task (2)—

retrieval performance over an entire query session. Our overall averaged nsDCG@10

query1 → session score on all 136 topics is better for our weighted run compared to

the unweighted run. Nevertheless, it is still slightly below the median of all systems.

However, analyzed topicwise, our weighted run beats the median of all systems on 84

of 136 topics (61.76%) and we achieve the best (maximum) performance of all systems

on 4 topcis (2.94%). This is quite surprising as we did not expect to perform that well

on the rather short queries and sessions that do not really fit the use case of our system.

Table 3. Results for nsDCG@10_dupes averaged over all 136 topics.

query1 → query2 query1 → session

unweighted 0.1859 0.1654
weighted 0.1859 0.1748
median all systems 0.2067 0.1869
max all systems 0.2449 0.229

The behavior for the duplicate free version of nsDCG (results in Table 3) is similar

to the pure nsDCG. Our weighted variant improves over the unweighted one but again

is slightly below the median of all systems. However, seen topicwise, our weighted

sessionw run beats the median of all systems on 86 out of 136 topics (63.24%) and

yields the best (maximum) performance of all systems for 5 topics (3.68%).

As for Task (1)—retrieval performance for a given query by using the user’s pre-

vious query—, performance can be evaluated by comparing the scores of query1 →
query2 and query1 → session for the nsDCG metrics. Our results on the session re-

sult lists are worse compared to the query2 lists for both nsDCG metrics but this is

the same with the median or the maximum of all systems. Again it should be noted

that we expect our framework to perform better for longer sessions and queries where

computing maximum queries makes more sense (cf. the discussion in Section 5).

As to compare the results “query-wise” we give our obtained nDCG values in Ta-

ble 4.

Table 4. Results for nDCG@10 averaged over all 136 topics.

query
1

query
2

session

unweighted 0.1638 0.2014 0.1621
weighted 0.1638 0.2014 0.1776
median all systems 0.1894 0.2144 0.17
max all systems 0.2354 0.2658 0.2602

Again, our system (weighted and unweighted) and the median and best over all

systems perform best on the second query alone not incorporating knowledge about

the first query. At least for our system we hypothesize that we could perform better on

longer sessions with more keywords; which gives rise to the following discussion and

concluding remarks.

5 Discussion

As can be seen from the evaluation, our approach performs comparable to the median

of all systems. This is quite encouraging, however, at least on average the retrieval

performance tables show that yet our approach yields no improvement by considering

two queries as a session compared to just processing the second query alone. But note

that this holds for the median and maximum of all systems as well.

One reason might be the rather short queries and the session length of two queries.

At least our approach is designed for longer sessions with more queries and keywords.

In case of the 150 sessions of the 2010 TREC Sessions track often the complete query

containing all keywords returned enough hits such that computing the maximum query

does not remove any keywords. Furthermore, some topics are quite similar to each

other (e.g., the various queries for the obama family tree) or rather “artificial” (to

be or not to be meant to check stopword techniques?!).

Nevertheless, evaluating session processing techniques and not just single query

retrieval is an important task from our perspective. As the Sessions track addresses

exactly this problem it opens the evaluation perspective on a very interesting research

area and we hope that it will be continued. An interesting future task might however

involve longer and more diverse sessions.

References

[BF06] Thorsten Brants and Alex Franz. Web 1T 5-gram Version 1. Linguistic Data Consor-

tium LDC2006T13, Philadelphia, 2006.

[BG08] Ziv Bar-Yossef and Maxim Gurevich. Random sampling from a search engine’s index.

Journal of the ACM, 55(5), 2008.

[HPSB10] Matthias Hagen, Martin Potthast, Benno Stein, and Christof Bräutigam. The Power

of Naïve Query Segmentation. In Fabio Crestani, Stéphane Marchand-Maillet, Hsin-

Hsi Chen, Efthimis N. Efthimiadis, and Jacques Savoy, editors, Proceeding of the 33rd

International ACM SIGIR Conference on Research and Development in Information

Retrieval, SIGIR 2010, Geneva, Switzerland, July 19-23, 2010, pages 797–798. ACM,

July 2010.

[JPDN08] Kalervo Järvelin, Susan L. Price, LoisM. L. Delcambre, and Marianne Lykke Nielsen.

Discounted cumulated gain based evaluation of multiple-query IR sessions. In Ad-

vances in Information Retrieval , 30th European Conference on IR Research, ECIR

2008, Glasgow, UK, March 30-April 3, 2008. Proceedings, pages 4–15, 2008.

[SH10] Benno Stein and Matthias Hagen. Making the Most of a Web Search Session. In 2010

IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent

Technology (WI-IAT 2010), pages 90–97, August 2010.

[SH11] Benno Stein and Matthias Hagen. Introducing the User-over-Ranking Hypothesis.

In Advances in Information Retrieval, Proceedings of the 33rd European Conference

on Information Retrieval (ECIR 2011), Lecture Notes in Computer Science, Berlin

Heidelberg NewYork, 2011. Springer. (to appear).

[SPT10] Benno Stein, Martin Potthast, andMartin Trenkmann. Retrieving CustomaryWeb Lan-

guage to Assist Writers. In Cathal Gurrin, Yulan He, Gabriella Kazai, Udo Kruschwitz,

Suzanne Little, Thomas Roelleke, Stefan M. Rüger, and Keith van Rijsbergen, editors,

Advances in Information Retrieval, Proceedings of the 32nd European Conference on

Information Retrieval (ECIR 2010), volume 5993 of Lecture Notes in Computer Sci-

ence, pages 631–635, Berlin Heidelberg NewYork, 2010. Springer.

[TP08] Bin Tan and Fuchun Peng. Unsupervised query segmentation using generative lan-

guage models and Wikipedia. In Proceedings of the 17th International Conference

on World Wide Web, WWW 2008, Beijing, China, April 21-25, 2008, pages 347–356,

2008.

